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Abstract
We consider the transport and the noise characteristics for the case of a T-shape
double-quantum-dot system using the equation of motion method. Our theoretical results,
obtained in an approximation equivalent to the Hartree–Fock approximation, account for
non-zero on-site Coulomb interaction in both the detector and side dots. The existence of a
non-zero Coulomb interaction implies an additional two resonances in the detector’s dot density
of states and thereafter affects the electronic transport properties of the system. The system’s
conductance presents two Fano dips as a function of the energy of the localized electronic level
in the side dot. The Fano dips in the system’s conductance can be observed for both strong (fast
detector) and weak coupling (slow detector) between the detector dot and the external
electrodes. Due to stronger electronic correlations, the noise characteristics in the case of a slow
detector are much higher. This setup may be of interest for the practical realization of qubit
states in quantum dot systems.

1. Introduction

Transport through a complex quantum dot (QD) system is
of high interest from both the practical applications and
theoretical point of view [1]. From the applications point
of view, QD systems may provide the perfect environment
for the implementation of nanoelectronics and the realization
of quantum bits (qubits). On the other hand, QD systems
allow the theoretical study of quantum many body effects.
Particularly, the Anderson single-impurity model [2] was
extensively used to understand the electronic correlations in
QD systems. The model, in which QDs are represented as
impurities, was successfully applied to the study of single-or
multiple-dot systems. For example, single-QD systems allow
the controlled realization of the Kondo regime of the Anderson
impurity problem [3]. Multiple-dot systems may be subject to
inter-dot coupling, and accordingly novel many body states can
be generated.

In the case of a double-QD system, with the QDs arranged
in a series, parallel, or T-shape configuration (see [4] for
a picture of these configurations), it was shown that the
arrangement of the component QDs plays an important role
when transport properties are investigated [4]. The results

obtained for the system’s conductance can be explained
based on Kondo resonances influenced by Fano interference
effects [5]. In the case of a series configuration there
are no interference effects and the possibility of a double-
peaked Kondo resonance due to the inter-dot tunneling
may reduce the system’s conductance. Differently, in the
case of a parallel configuration the two different channels
of electron propagation are responsible for a sharp and a
broad Kondo resonance. The interference between these
two Kondo resonances will significantly reduce the system’s
conductance [4]. The double-dot T-shape configuration, with
one dot (detector dot) directly connected to the external leads
and the second dot (side dot) coupled to the first one but
not to the external leads, has a particular transport behavior.
In this case, the density of states (DOS) of the detector dot
(coupled to the external leads) has a broad resonance and
develops a sharp dip structure due to the interference with
the states from the second dot while the second dot DOS
presents a sharp Kondo resonance. Accordingly, the system’s
conductance is very small in the Kondo regime. A similar
double-dot system, with one Kondo dot and one effectively
noninteracting dot, was shown by Dias da Silva et al [6]
that it can be continuously tuned to create a pseudogapped
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Figure 1. Schematic representation of the T-shape
double-quantum-dot system. The detector dot (characteristic energy
Ed) is coupled both to the side quantum dot (characteristic energy
Ea) and the external electrodes L and R.

DOS and access a quantum-critical point separating Kondo
and non-Kondo phases. Different approaches for the study
of the T-shape system were based on the Anderson impurity
model. For example, Wu et al [7] considered an infinite on-
site Coulomb interaction in the detector dot so the double
occupancy was forbidden in this dot. On the other hand, Guclu
et al [8] assumed an infinite on-site Coulomb interaction in
the side QD, neglecting it in the detector QD. Although the
two mentioned configurations are different, both the Kondo
effect and the Fano interference effect play an important role
in the system’s transport properties [7, 8]. Transport properties
in quantum dot systems were discussed also in terms of anti-
resonance scattering, a method which gives similar results
with the standard Green’s function method [9]. In short,
the evaluation of the system’s transmission coefficient shows
that for a single-impurity Anderson model every time the
conduction electron’s energy is equal to the localized level
energy, an anti-resonance scattering occurs, leading to a dip
in the system’s conductance. In this case the transmission
coefficient vanishes and the conduction channel is completely
blocked by the presence of the localized (impurity) level.

Here we propose an investigation of the T-shape double-
quantum-dot system (see figure 1) based on the equation of
motion (EOM) method. Our approximation is similar to the
one used by Hewson [10] in the study of the Anderson’s
single-impurity model. We will consider the general case with
finite on-site Coulomb interaction in both the detector and side
dots. We will discuss the main transport properties of the
system including the system’s conductance and current noise
characteristics. The paper is organized as follows. In section 2
we present the general Hamiltonian of the system and using the
EOM method we estimate the detector’s dot DOS. In section 3
we analyze the system’s main electronic transport properties.
Finally, section 4 presents our conclusions.

2. Model

The T-shape double-quantum-dot system is described by the
following general Hamiltonian:

H =
∑

k,σ ;α
εkc†

kσ ;αckσ ;α +
∑

σ

Ed d†
σ dσ + Udnd↑nd↓

+
∑

σ

Eaa†
σ aσ + Uana↑na↓ + t

∑

σ

(d†
σ aσ + a†

σ dσ )

+
∑

k,σ ;α
Vkd;α(c†

kσ ;αdσ + d†
σ ckσ ;α). (1)

The first term in the Hamiltonian describes the free electrons
in the leads, c†

kσ ;α and ckσ ;α being fermionic creation and
annihilation operators for electrons with momentum k and
spin σ in the lead α (α ≡ left (L), right (R)). The following
four terms describe the mesoscopic part of the Hamiltonian
and correspond to the electrons localized in the detector (Ed )
and side (Ea) quantum dots of the system. Additionally,
electrons in each component dot are subject to on-site Coulomb
interaction described by the interaction terms Ud and Ua ,
respectively. The last two terms in the Hamiltonian describe
interactions between the system’s electrons. The coupling
constant t characterizes the interaction between the electrons
localized in the detector and side dots of the system. Vkd;α
characterizes the interaction between the free electrons in
the lead α and the localized electrons in the detector dot.
For simplicity we will consider the case Vkd;L = Vkd;R in
which the detector couples to the leads only in the symmetric
combination ckσ = (ckσ ;L + ckσ ;R)/

√
2 and the dot connects

effectively to a single lead, with Vkd = √
2VkdL.

The system’s transport properties can be investigated
using the Green’s function formalism. The main quantity
will be the Green’s function corresponding to the localized
electrons in the detector dot. One way to extract this Green’s
function is to use the EOM method. It is well known that in the
case of a general Anderson impurity model, the EOM method
leads to an infinite hierarchy of higher order Green’s functions,
so in order to obtain the detector’s dot electronic Green’s
function one needs to introduce a reliable approximation to
truncate this hierarchy. The difficulty is mainly introduced by
the interaction terms in the system’s Hamiltonian. When the
on-site Coulomb interaction term is absent, an exact solution
of the problem is possible as it is well known that in this case
the set of equations obtained from the EOM method is closed.
In the case of two fermionic operators A and B the Fourier
transform of the Green’s function with respect to the time,
G AB(ω) = 〈〈A; B〉〉, is given by the general equation

ω〈〈A; B〉〉 = 〈{A, B}〉 + 〈〈[A, H ]; B〉〉, (2)

where 〈A〉 represents the mean value of the operator A,
{A, B} the anti-commutator of the operators A and B , and
[A, B] their commutator. The last term on the right-hand
side of the equation is responsible for the generation of the
infinite chain of higher order Green’s functions. Our main
goal will be to calculate the d-electrons Green’s function,
Gσ

dd(ω) = 〈〈dσ ; d†
σ 〉〉, to be used in the estimation of the

system’s transport properties. The calculations are relatively
simple, however, they lead to a chain of coupled Green’s
functions equations. The approximation we used to close this
set of equations is similar to the one introduced by Hewson [10]
and in some sense is equivalent to the standard Hartree–
Fock approximation. The resulting Green’s functions for the
localized electrons in the detector and side dots are given by

Gσ
dd(ω) =

[
(ω − Ed)(ω − Ed − Ud)

ω − Ed − (1 − 〈nd−σ 〉)Ud
−

∑

k

|Vkd |2
ω − εk

− t2 ω − Ea − (1 − 〈na−σ 〉)Ua

(ω − Ea)(ω − Ea − Ua)

]−1

(3)
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and

Gσ
aa(ω) =

[
(ω − Ea)(ω − Ea − Ua)

ω − Ea − (1 − 〈na−σ 〉)Ua

− t2

(ω−Ed )(ω−Ed−Ud )

ω−Ed −(1−〈nd−σ 〉)Ud
− ∑

k
|Vkd |2
ω−εk

]−1

, (4)

where 〈nd−σ 〉 and 〈na−σ 〉 represent the average occupancy of
the electronic levels in the two dots of the system. Note that in
the case t = 0 the general case of a single Anderson impurity
is recovered. The above equations are coupled as based on the
general Green’s function formalism the average occupancy of
the electronic level is given by

〈ndσ 〉 = − 1

π

∫
Im Gσ

dd(ω + iη) dω, (5)

with η → 0. A similar relation stands for 〈naσ 〉. The imaginary
part of the Green’s functions can be extracted if we use the
general relation

∑

k

|Vkd |2
ω − εk + iδ

= P
∑

k

|Vkd |2
ω − εk

− i	,

where P represents the principal part and we introduced for
convenience the notation 	 = π

∑
k |Vkd |2δ(ω−εk) with δ(x)

the delta-Dirac function. By definition the detector dot DOS is
given by

ρσ
dd (ω) = − 1

π
Im Gσ

dd(ω). (6)

The simplest situation occurs when the on-site Coulomb
interaction in both the detector and side dots is neglected
Ud = Ua = 0. In this case, the Green’s function are not
coupled and the detector dot density of state becomes

ρσ
dd(ω) = 1

π

	

(ω − Ed − t2

ω−Ea
)2 + 	2

. (7)

It is convenient to introduce dimensionless quantities and
measure all energies in units of the coupling constant t relative
to the Fermi level of the conduction electrons in the leads
(EF = 0). We will analyze two different situations relative
to the transport properties of the T-shape double-quantum-dot
system. In the first case 	/t > 1 and the conduction electrons
will flow relatively fast through the detector dot and their
interactions with the localized electrons in the side dot will not
influence drastically the transport properties. On the opposite
situation, when 	/t < 1, the flow of the conduction electrons
will depend on the interaction with the localized electrons in
the side dot and therefore we expect this situation to reflect on
the transport properties of the system. We will address the case
of a large ratio (	/t = 2) as a fast detector and the case of a
small ratio (	/t = 0.4) as a slow detector.

In figure 2 we present the DOS for the detector dot for
both the fast and slow detector configurations. As a general
result, the ratio 	/t determines the full width half maximum
(FWHM) value of the density of states. One can clearly see
that the density of states presents sharper peaks for the case of
a slow detector. The value of the energy level in the side dot
(Ea) controls the position of the two peaks in the detector’s dot

Figure 2. The detector’s dot DOS in the absence of on-site Coulomb
interaction (Ud = Ua = 0) for the case of a (a) fast detector
(	/t = 2) and a (b) slow detector (	/t = 0.4) for different values
of the ratio Ea/t (Ea/t = 1.4—full line, Ea/t = −1.4—dashed
line, and Ea/t = −2.4—dotted line). For both cases Ed/t = −0.2.

DOS. Our calculation is performed at T = 0 K, however, we
expect that effects related to temperature to be minimal on the
DOS function. For both cases Ed/t = −0.2.

A similar situation occurs for infinite on-site Coulomb
interaction (Ud = Ua = ∞). In this case, due to strong
Coulomb repulsion between electrons, only one electron can
occupy any of the two localized energy levels in the detector
and side dots. The two equations giving the electron Green’s
functions in the system’s component dots are coupled via
the terms involving the occupation numbers 〈nσ

d 〉 and 〈nσ
a 〉.

Although a solution for the two Green’s functions requires a
self-consistent calculation, the advantage of the infinite on-site
Coulomb interaction case is that the limit Ud = Ua = ∞
the form of the two equations is simplified. To solve these
equations, we start from the Green’s functions corresponding
to the Ud = Ua = 0 case and use them as a starting point to
calculate the occupancy of the side dot level 〈nσ

a 〉. Thereafter,
we use this value to start the self-consistent calculation of the
two Green’s functions using equations (3) and (4). The results
of the calculation are presented in figure 3. In the case of
infinite on-site Coulomb interaction the detector dot DOS has
the same number of peaks as in the previous case, however, in
this situation the peaks are grouped together.

A more interesting case is the one with arbitrary on-site
Coulomb interaction in the two component dots. A non-zero
on-site Coulomb interaction is responsible for two additional
peaks in the detector dot DOS. The position of these peaks
is determined by the relative strength of the on-site Coulomb
interaction. Figures 4(a) and (b) considers the detector dot
DOS for Ud/t = 0.2 and Ua/t = 5 and figures 4(c) and (d) for
Ud/t = 0.2 and Ua/t = 5. Each case is analyzed for Ed/t =
−0.2 and Ea/t = 1.4 (full line) and Ea/t = −2.4 (dashed

3
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Figure 3. The detector’s dot DOS in the presence of infinite on-site
Coulomb interaction (Ud = Ua = ∞) for the case of a (a) fast
detector (	/t = 2) and a (b) slow detector (	/t = 0.4) for different
values of the ratio Ea/t (Ea/t = 1.4—full line,
Ea/t = −1.4—dashed line, and Ea/t = −2.4—dotted line). For
both cases Ed/t = −0.2.

line). The presence of additional peaks in the detector’s dot
density of states will reflect in the transport properties of the
system.

3. Transport properties

Transport properties for the T-shape double-quantum-dot
system can be discussed in terms of system’s conductance
and current noise characteristics. To calculate the system’s
conductance we use the Meir and Wingreen [11] formula:

G = G0

∫ ∞

−∞
dω

	

2

[
−∂ f (ω)

∂ω

]
ρdd(ω), (8)

where G0 = 2e2/h̄ (e is the electron charge and h̄ the Plank
constant), ρdd(ω) is given by equation (6), and f (x) represents
the Fermi–Dirac distribution function. This general equation
will lead to an expression for the system’s conductance as
a function of temperature. We will limit our study to the
T = 0 K case, when the derivative of the Fermi–Dirac function
can be substituted by a Dirac-delta function. In the case
t = 0, i.e., when the side dot is decoupled from the system,
the general transport theory for the Anderson single-impurity
model predicts the existence of a Kondo peak in the system’s
conductance. The situation completely changes for t 
= 0.

The trivial case without on-site Coulomb interaction
(Ud = Ua = 0) can be solved analytically. In this case the
localized electron’s Green’s function can be obtained exactly
and the system’s conductance is given by

G = G0
	2

2π

E2
a

(Ed Ea − t2)2 + 	2 E2
a

. (9)

When the two dots are decoupled from the leads (	 =
0) the system’s conductance vanishes and when the side

Figure 4. The detector’s dot DOS for finite on-site Coulomb interaction ((a) and (b)— Ud/t = 0.2, Ua/t = 5; (c) and (d)— Ud/t = 5,
Ua/t = 0.2) for the case of a fast detector ((a) and (c)— 	/t = 2) and for a slow detector ((b) and (d)— 	/t = 0.4) for different values of
the ratio Ea/t (Ea/t = 1.4—full line, Ea/t = −2.4—dashed line). For both cases Ed/t = −0.2.

4



J. Phys.: Condens. Matter 21 (2009) 215604 K Brown et al

Figure 5. The system’s conductance as a function of the energy level
in the side dot for (a) Ud = Ua = 0 and (b) Ud = Ua = ∞ in the
case of a slow detector 	/t = 0.4 (full line) and in the case of a fast
detector 	/t = 2 (dashed line). For both cases Ed/t = −0.2.

dot is decoupled from the detector dot (t = 0) the
system’s conductance matches the conductance obtained from
the Anderson single-impurity model [12]. The situation
is slightly different when we consider a non-zero on-site
Coulomb interaction in both the detector and side dots of the
system. In this case, an exact analytical solution is impossible,
approximations being required to obtained the localized
electrons Green’s function. To account for the system’s
transport properties we used the approximation introduced
by Hewson [10] which is very similar to the Hartree–Fock
approximation. The disadvantage of this approximation is that
it cannot account for the physics related to the Kondo effect.
Figure 5 presents the system’s conductance as a function of
the side dot energy level for (a) Ud = Ua = 0 and (b) Ud =
Ua = ∞. In both situations when the side dot energy Ea is
closed to the Fermi level (EF = 0) an anti-resonance scattering
occurs leading to a sharp drop in the system’s conductance. As
a general result, the dip is sharper in the case of infinite on-site
Coulomb interaction and a fast detector configuration.

A completely different situation occurs when finite on-site
Coulomb interaction is considered in both the detector and side
dots. In this case, the system’s conductance presents a double-
dip structure corresponding to two possible anti-scattering
processes one for each transport channel. The presence of the
two dips is consistent and does not depend on the relative size
of the on-site Coulomb interaction in the two component dots.
Figure 6 presents the conduction of the double-dot T-shape
system for different values of the side dot energy level. We
consider two different situation, Ud/t = 5 and Ua/t = 0.2
for figure 6(a) and Ud/t = 0.2 and Ua/t = 5 for figure 6(b).
In both cases we consider the ratio Ed/t = −0.2, however,
different values for this ratio do not change qualitatively the
behavior of the system’s conductance.

Quantum and thermal fluctuations are very important as
they are one of the reasons why quantum correlations are
difficult to observe experimentally. Such fluctuations can be
estimated based on the current noise characteristics. We will
discuss the system’s current noise characteristics in terms of
the Fano factor defined as the ratio of the shot noise S(V )

Figure 6. The system’s conductance as a function of the energy level
in the side dot for (a) Ud/t = 5 and Ua/t = 0.2 and (b) Ud/t = 0.2
and Ua/t = 5 in the case of a slow detector 	/t = 0.4 (full line) and
in the case of a fast detector 	/t = 2 (dashed line). For both cases
Ed/t = −0.2.

and the current I (V ) passing through the system, i.e., γ =
S(V )/(2eI (V )), e being the electron charge. The current shot
noise, S(V ), when an external bias V is applied to the detector
dot is defined as a correlation function of current fluctuations
and it can be proved that is related to the detector dot DOS via
the transmission function, T (ω) = π	ρd(ω) [14]:

S(V ) = 4e2

h

∫ eV/2

−eV/2
dω T (ω)[1 − T (ω)], (10)

where h is the Planck’s constant. On the other hand, the source
current can be calculated as:

IL = 2e

h

∫ ∞

−∞
dω T (ω)[ fL(ω) − fR(ω)], (11)

where fα(ω) = [exp {(ω − μα)/kBT }+1]−1 with T being the
temperature and kB the Boltzmann constant. For a symmetrical
bias condition we set μL = EF − eV/2 and μR = EF + eV/2
with EF = 0. Note that in our particular situation the current
is conserved, IL = IR. In the T = 0 K limit the Fermi–
Dirac functions fα(ω) are given by usual step functions and the
evaluation of the current is relatively simple. Special attention
should be given to the point V = 0 when the Fano factor can
be calculated as γ = 1 − T (EF).

In figure 7 we plotted the Fano factor as a function of the
applied external bias for (a) and (b) Ud = Ua = 0 and (c)
and (d) Ud = Ua = ∞. We considered both the slow and fast
detector situations for a fixed energy level in the detector dot
(Ed/t = −0.2) and different values for the energy level in the
side dot (Ea/t = 1.4—full line, Ea/t = −1.4—dashed line,
and Ea/t = −2.4—dotted line). As a general result, the Fano
factor for the case of a slow detector is relatively larger than
that of a fast detector. The reason for this behavior is due to
the difference in the current magnitude between the slow and
fast detector configurations, as for both cases the shot noise
has the same order of magnitude. A similar situation occurs
also when we consider finite on-site interaction in both the
detector and side dots (see figure 8). From the microscopic

5
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Figure 7. The system’s Fano factor γ as a function of the applied bias for (a) and (b) Ud = Ua = 0 and (c) and (d) Ud = Ua = ∞ in the case
of a fast detector 	/t = 0.4 ((a) and (c)) and in the case of a slow detector 	/t = 2 ((b) and (d)) for various values of the ratio Ea/t
(Ea/t = 1.4—full line, Ea/t = −1.4—dashed line, and Ea/t = −2.4—dotted line). For all situations Ed/t = −0.2.

point of view, the larger Fano factor in the slow detector is
explained by the stronger coupling of the conduction electrons
to the energy level in the side dot. In all situations the Fano
factor is relatively larger when the on-site Coulomb interaction
is non-zero, indicating that stronger electronic interactions in
the system are responsible for more noise.

4. Conclusions

In conclusion, we presented a theoretical investigation of
the main transport properties of a T-shape double-dot system
based on the EOM method. Our results are obtained in an
approximation equivalent to the Hartree–Fock approximation
for zero, finite, and infinite on-site Coulomb interaction in
both the detector and side dots. We considered two possible
configurations of the system based on the relative interaction
strength between the conduction electrons and the localized
electrons in the detector dot. In the slow detector situation,
this interaction is smaller than the interaction between the
electrons in the detector and side dots (	/t < 1) and we
proved that the transport properties of the system are strongly
affected by the presence of the side dot. On the other hand,
in the case of a fast detector, when the interaction between
the electrons in the detector and side dots is relatively small
compared to the interaction between the conduction electrons
and the electrons localized in the detector dot (	/t > 1),
the role of the side dot is diminished in the system’s transport
properties. The first quantity we considered was the detector
dot DOS. When the on-site Coulomb interaction is set to zero

or infinite in both dots, the detector dot DOS shows two peaks,
slightly sharper for the case of a slow detector. The situation is
different when the on-site Coulomb interaction has finite value
in both the component dots. In this case, additional peaks are
present in the detector dot DOS. Still, in the case of a slow
detector, these peaks are sharper. The second quantity we
considered was the system’s conductance. As a general result,
the system’s conductance presents an oscillatory behavior as a
function of the energy level in the system’s side dot. For the
zero and infinite on-site Coulomb interaction, there is only one
oscillation represented by a dip in the system’s conductance.
When the on-site Coulomb interaction is finite in both dots,
the system’s conductance presents two dips as a signature for
the additional peaks in the detector’s dot DOS. As a general
result, the dips in the system’s conductance are sharper for the
case of a fast detector. This situation can be understood if we
consider the derivative of the Fermi function in the system’s
conductance which can account for all sharp features in the
detector’s dot DOS and lead to a broader conductance for the
case of a slow detector. Finally, we analyzed the noise in the
system’s transport in terms of the Fano factor. Our results
prove that when electronic correlations are stronger the noise
is higher, making the signal detection in the slow detector case
more difficult to measure. The Hartree–Fock approximation
leads to results in good agreement with the results generated
by the bosonization method, at least when we discuss the
system’s main transport properties. On the other hand, an
approximation which includes terms beyond the Hartree–Fock
approximation has to be considered in connection with other

6
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Figure 8. The system’s Fano factor γ as a function of the applied bias for (a) and (b) Ud/t = 5 and Ua/t = 0.2 and (c) and (d) Ud/t = 0.2
and Ua/t = 5 in the case of a fast detector 	/t = 0.4 ((a) and (c)) and in the case of a slow detector 	/t = 2 ((b) and (d)) for various values
of the ratio Ea/t (Ea/t = 1.4—full line, Ea/t = −1.4—dashed line, and Ea/t = −2.4—dotted line). For all situations Ed/t = −0.2.

possible phenomena in quantum dot systems. One example
is the Kondo effect whose physics can be investigated only
if we consider additional higher order Green’s functions in
the equation of motion method [13]. Another example is the
investigation of the differential capacitance in quantum dots
or molecular systems [15, 16]. A higher order approximation
is required for the understanding of the system’s transport
properties when a transition between the Coulomb blockade
regime to the Kondo regime is considered [17]. Especially, it
will be of great interest to account for such effects in multi-
quantum dot systems [18].
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